Parallel computational algorithms for generalized Chinese remainder theorem
نویسندگان
چکیده
Recently, the residue number system (RNS) has been intensively studied. The Chinese remainder theorem (CRT) is a solution to the conversion problem of a number to RNS with a general moduli set. This paper introduces the generalized CRT (GCRT) with parallel algorithms used for the conversion. The GCRT differs from the CRT because it has the advantage of having more applications than does the CRT. The GCRT, however, has a disadvantage in computational performance. To remedy this shortcoming, this paper proposes algorithms that calculate concurrently for some non-related program fragments of GCRT computation. These proposed algorithms also allow the GCRT to compute more efficiently. 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Fast Parallel Garner Algorithm for Chinese Remainder Theorem
This paper presents a fast parallel garner algorithm for Chinese remainder theorem. The variables in garner algorithm are divided into public parameters that are constants for fixed module and private parameters that represent random input integers. We design the parallel garner algorithm by analyzing the data dependencies of these arithmetic operations for computing public variables and privat...
متن کاملEfficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملEfficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملDistributive Lattices and Cohomology
A resolution of the intersection of a finite number of subgroups of an abelian group by means of their sums is constructed, provided the lattice generated by these subgroups is distributive. This is used for detecting singularities of modules over Dedekind rings. A generalized Chinese remainder theorem is derived as a consequence of the above resolution. The GelfandNaimark duality between finit...
متن کاملOn Solving a Generalized Chinese Remainder Theorem in the Presence of Remainder Errors
In estimating frequencies given that the signal waveforms are undersampled multiple times, Xia and his collaborators proposed to use a generalized version of Chinese remainder Theorem (CRT), where the moduli are dm1, dm2, · · · , dmk with m1,m2, · · · ,mk being pairwise coprime. If the errors of the corrupted remainders are within d 4 , their schemes are able to construct an approximation of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Electrical Engineering
دوره 29 شماره
صفحات -
تاریخ انتشار 2003